A combinatorial problem on finite Abelian groups, I

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on finite a-perfect abelian groups

‎let $g$ be a group and $a=aut(g)$ be the group of automorphisms of‎ ‎$g$‎. ‎then the element $[g,alpha]=g^{-1}alpha(g)$ is an‎ ‎autocommutator of $gin g$ and $alphain a$‎. ‎also‎, ‎the‎ autocommutator subgroup of g is defined to be‎ ‎$k(g)=langle[g,alpha]|gin g‎, ‎alphain arangle$‎, ‎which is a‎ ‎characteristic subgroup of $g$ containing the derived subgroup‎ ‎$g'$ of $g$‎. ‎a group is defined...

متن کامل

On a Permutation Problem for Finite Abelian Groups

LetG be a finite additive abelian group with exponent n > 1, and let a1, . . . , an−1 be elements of G. We show that there is a permutation σ ∈ Sn−1 such that all the elements saσ(s) (s = 1, . . . , n− 1) are nonzero if and only if ∣∣∣{1 6 s < n : n d as 6= 0 }∣∣∣ > d− 1 for every positive divisor d of n. When G is the cyclic group Z/nZ, this confirms a conjecture of Z.-W. Sun.

متن کامل

Some combinatorial aspects of finite Hamiltonian groups

In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...

متن کامل

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

متن کامل

On $m^{th}$-autocommutator subgroup of finite abelian groups

Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G‎,‎alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1969

ISSN: 0022-314X

DOI: 10.1016/0022-314x(69)90021-3